A scoping review of the evidence for the impact of pharmacological and non-pharmacological interventions on shift work related sleep disturbance in an occupational setting [version 1; peer review: 1 approved, 1 approved with reservations]

Rebecca Conway-Jones, Ella Dunlop, Simon Kyle, David Ray, Nia Roberts, Andrew Farmer

1 Medical Science Division, University of Oxford, Oxford, UK
2 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
3 NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
4 Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
5 The Bodleian Libraries, University of Oxford, Oxford, UK
6 Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

Abstract

Background: Shift work is essential in society but can be detrimental to health and quality of life and is associated with decreased productivity and increased risk of accidents. Interventions to reduce these consequences are needed, but the extent and range of trial evidence for interventions for those most affected by their shift-work schedules is unclear. We therefore carried out a scoping review to assess the availability of evidence to inform the development and evaluation of future interventions.

Methods: We aimed to identify clinical trials of any intervention for shift work-related sleep disturbance that included a comparator group, where the intervention was delivered in an occupational setting. We searched Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, CINAHL, EMBASE, Medline and Science Citation Index from inception to 30th March 2020 for relevant citations. Citations were screened by two independent reviewers, a third reviewer resolved disagreements. Data were extracted by two independent reviewers.

Results: From 1250 unique citations, 14 studies met inclusion criteria for comparative trials of treatment in an occupational setting. There were five trials of hypnotics, five trials of stimulants, and four trials of non-pharmacological therapies (cognitive behavioural therapy, light
Corresponding author: Rebecca Conway-Jones (rebecca.conway-jones@nhs.net)

Author roles: Conway-Jones R: Conceptualization, Data Curation, Investigation, Methodology, Project Administration, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Dunlop E: Conceptualization, Data Curation, Investigation, Validation, Visualization, Writing – Review & Editing; Kyle S: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Ray D: Conceptualization, Funding Acquisition, Methodology, Supervision, Writing – Review & Editing; Roberts N: Data Curation, Investigation, Methodology, Resources, Writing – Review & Editing; Farmer A: Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust [107849]; and a Medical Research Council programme grant awarded to David William Ray [MR/P023576/1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Conway-Jones R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Conway-Jones R, Dunlop E, Kyle S et al. A scoping review of the evidence for the impact of pharmacological and non-pharmacological interventions on shift work related sleep disturbance in an occupational setting [version 1; peer review: 1 approved, 1 approved with reservations] Wellcome Open Research 2021, 6:198 https://doi.org/10.12688/wellcomeopenres.17002.1

First published: 03 Aug 2021, 6:198 https://doi.org/10.12688/wellcomeopenres.17002.1

therapy, aromatherapy and herbal medicine). Outcomes included sleep parameters, day-time sleepiness, and quality of life. There were no consistently reported outcomes across trials.

Conclusions: Interventions fell into three distinct groups investigated in distinct time periods without progression from efficacy trials to wider-scale interventions. The lack of consistent patient-reported outcome measures limits synthesising findings. Some trials focussed on optimising sleep, others on reducing wake-time sleepiness. Adequately powered trials of existing interventions are needed, with the development and testing of novel combination treatments in patients with well-defined shift work sleep disorder. A core set of clinically relevant outcomes will develop and standardise the evidence-base for shift work sleep disorder.

Keywords
Shift work disorder, shift work related sleep disturbance, occupational health, shift work, armodafinil, modafinil, hypnotics
Introduction
Shift work is increasing and often unavoidable in modern society. In 2015, 21% of the European Union working population carried out shift work\(^1\). For individuals, shift work has been linked to reduced quality of life, increased risk of workplace accidents\(^2,3\), sleep loss, obesity, type 2 diabetes, coronary heart disease, some cancers\(^4\) and depression\(^5\). In an occupational setting this has been associated with lost productivity and increased errors\(^6\). This is of particular concern where work performance is related to health and safety, for example in healthcare, emergency response and mining industries.

Shift work sleep disorder (SWD) refers to the sleep disturbance experienced by a subset of shift workers who respond particularly poorly to their shift work schedule\(^7\). SWD is chiefly defined as having insomnia and/or excessive sleepiness temporally associated with shift work lasting ≥3 months, and where the sleep disturbance is not better explained by another diagnosis\(^8\). A diagnosis of SWD is associated with a greater risk of poor quality sleep, subjective health complaints and poor coping\(^9\), peptic ulcers, sleepiness-related accidents, absenteeism and depression when compared to shift workers without SWD\(^8\). SWD represents an area of therapeutic interest for individuals and institutions alike. However, the range of and evidence for interventions in mitigating associated impairments is unclear.

Existing reviews of interventions to improve sleep, sleepiness and related outcomes for shift workers found low quality evidence for some interventions\(^9,10\). Melatonin, armodafinil, modafinil, caffeine and naps were all found to have low-quality evidence for their efficacy in improving one or more outcome domains\(^9\). Another review found studies of bright light, napping, physical exercise and sleep education as interventions for shift-workers, but concluded there was too much uncertainty to determine their impact\(^10\). To our knowledge, there has been no systematic review of clinical trials encompassing the full range of interventions focusing on shift-work related sleep disruption.

Here we present a scoping review of the available evidence from comparative studies examining the impact of interventions for SWD. We set out to identify all trials of shift workers with SWD, or sleep disturbance likely to be SWD that had a comparator group. We sought to establish the types and extent of available outcome data on this topic; how this has been reported and whether an informative quantitative data synthesis would be possible.

Methods
Study design
We carried out a scoping review to identify the main sources and extent of evidence available in the published literature\(^11\).

Eligibility criteria
Type of trials. We included randomised controlled trials (RCTs), randomised crossover trials and parallel group trials.

Population. We included trials carried out with workers who were undertaking shift work and who had SWD as defined by the International Classification of Sleep Disorders (ICSD) criteria at the time when the trial in question was carried out. We also included studies where shift-workers were selected for having some level of sleep disturbance, that was not better explained by a known, non-SWD diagnosis, such as obstructive sleep apnoea (OSA) or narcolepsy. We excluded trials conducted on shift-workers unselected for having sleep problems, or conducted solely on shift-workers selected for having OSA or narcolepsy. We excluded studies in which airline cabin-crew or military personnel were the primary population group, as we considered the aetiology of SWD alongside frequent crossing of time zones likely to be different to that of SWD in the general population\(^9\).

Interventions. We included trials with any intervention, or combination of interventions, aimed at preventing or reducing the effects of SWD on sleepiness when awake, sleep disturbance, and associated functional impairment (e.g. reduction in wellbeing, depressive symptoms). We categorised interventions into pharmacological hypnotics, pharmacological stimulants, and non-pharmacological therapies. We included trials where interventions were compared to placebo, ‘usual care’, no intervention or to each other. Example interventions for pharmacological stimulants might include modafinil or armodafinil. Example interventions for pharmacological hypnotics might include melatonin or zopiclone.

Outcomes. We set out to identify and record when studies had used the following types of outcome measures.

1. Sleep-wake outcomes:
 a. Sleep outcomes: Measures of sleep parameters, such as total sleep time (TST), sleep efficiency (SE), sleep onset latency (SOL) or wake after sleep onset (WASO), or other measures of sleep quality such as number of awakenings.
 b. Wake-time outcomes: Measures of alertness or sleepiness during waking hours, including Karolinska, Epworth or Stanford sleepiness scales (KSS, ESS, SSS); multiple sleep latency tests (MSLT).
 c. Combined sleep-wake outcomes: Comprising both wake-time and sleep-time components, for example the Insomnia Severity Index (ISI) or Pittsburgh Sleep Quality Index (PSQI).

2. Measures of impairment, including global measures of health-related quality of life, daytime functioning, and depressive symptoms.

We did not define the instrument of measurement to be used for any given parameter.
We also planned to record when studies reported outcomes of:

- Adverse events
- Injuries or accidents whilst at work or commuting.

Search method
Electronic searches were conducted for Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, CINAHL, EMBASE, Medline and Science Citation Index from inception to 30th March 2020. An example search strategy is shown in Table 1. The same search terms were used for all databases. We did not restrict by language. Title and abstract of all citations identified using this search strategy were screened for exclusion by two independent reviewers (R.C.-J., E.D.) using Rayyan software13. Conflicts were resolved with a third reviewer (A.F.). The full text of the remaining citations was then reviewed. Citations were only included in the study where they referred to a published journal article.

Data extraction, analysis and synthesis
Data were extracted manually by two independent reviewers using a custom spreadsheet [Microsoft Excel, Version 16.37, Copyright 2020]. We extracted study characteristics. We aimed to extract data about all outcomes relevant to this review to establish the extent of available data. Where studies reported multiple measures in the same domain (for example, multiple measures of quality of life), we selected externally validated measures.

Results
Search results and study characteristics
From 1250 unique citations, 14 trials met inclusion criteria for data extraction and analysis. Two included citations reported different outcomes from the same trial14,15. As each citation reported different outcome data the trial is referenced to both citations14,15. Figure 1 presents a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram showing reasons for study exclusions. In total, eight of the included trials were randomised controlled trials12,14-21. The remainder were cross-over22-24 and a parallel group design25-27.

The studies were carried out over a wide geographical area, including Europe, Asia, and North America (Table 2). There were a wide range of occupations evaluated including jobs in health care, industry, security services and broadcasting. Studies included those with rotating and fixed shifts. Five trials applied ICSD criteria for SWD in use at the time of the study; these were all studies of stimulants12,14,15,20,26,27. Interventions evaluated were hypnotic21-23 and stimulant drugs12,14,15,20,26,27, cognitive behaviour therapy14, aromatherapy18, light therapy19 and Shimian granules (a form of a Chinese herbal medicine)16. With one exception, the studies of hypnotics involved a wide range of research environments including studies of non-benzodiazepines (zopiclone21,25 and melatonin22,24), one study of a benzodiazepine (nitrazepam25) and one study of a benzodiazepine analogue (brotizolam25). No identical non-pharmacological intervention was studied by more than one study.

Four of the hypnotic intervention trials were conducted with rotating shift-workers21,23,25. Studies of stimulants were on mixed populations of rotating and permanent shift-workers or did not

<table>
<thead>
<tr>
<th>Table 1. Search Strategy Used for Medline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
</tbody>
</table>
specify their population characteristics in this way. All included studies with a sample size >50 participants were studies of stimulants. Non-pharmacological studies were on mixed populations of rotating and permanent shift-workers, or rotating shift workers.

Reported outcomes
Table 3 shows the outcomes reported by the studies included in this review; the most commonly reported outcomes were TST and SOL, though they were measured by a variety of tools (polysomnography, actigraphy and sleep diaries).

Sleep-wake outcomes. The most commonly used wake-time outcome was KSS. Studies of pharmacological interventions predominantly used MSLT and sleepiness scales. No study used the ESS. Three studies of non-pharmacological interventions used the ISI. No non-pharmacological study used a sleepiness scale.

Outcomes focused on other aspects of impairment. Clinical Global Impression of Change (CGI-C) score was used by three studies. Regarding depressive symptoms the Hospital Anxiety and Depression Scale (HADS) was used by two studies. Two studies reported the 36-item Short Form Survey (SF-36), and two reported reaction time.

Adverse events and drop-outs. Adverse events were only reported by pharmacological studies. All studies of stimulants described monitoring for adverse events throughout the study periods. The protocols described varied but included combinations of subjective symptom reporting, physical examination and bedside and laboratory investigations. One study of zopiclone relied on study participants spontaneously reporting symptoms that they felt might be related to the study intervention. Few studies reported total counts of participants affected by any adverse events. Some, but not all, studies reported where drop-outs were due to adverse events. Only one study explicitly defined how adverse event severity was categorised and one other stated only that event severity was determined by a site investigator.

Discussion
Our scoping review provides evidence that a review to assess the effectiveness of interventions to treat SWD would not provide sufficient data for a comprehensive meta-analysis. There are too few studies amongst shift workers with SWD for any particular intervention or category of intervention. Even where there is more than one study, there are often methodological limitations preventing pooling of data using meta-analysis, such as different measurement tools for one outcome. Whilst we considered that a narrative review might be possible, the represented methodologies, interventions and data were so heterogenous it was not deemed appropriate at this point.

We did not critically appraise the included sources of evidence as this scoping review was conducted to provide an overview of the existing evidence regardless of methodological quality or risk of bias. However, we note that there were high rates of...
<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Outcome focus</th>
<th>Timing</th>
<th>Funding Source</th>
<th>Conflict of interests with relevant pharmaceutical company declared?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadeghi-sat-Haghiki, K</td>
<td>Iran Oil refinery</td>
<td>1 month</td>
<td>Sleep outcomes and other</td>
<td>3 nights; 2 week wash out</td>
<td>Tehran University of Medical Sciences, and Health Services. Osval Pharmaceutical Co</td>
<td>No</td>
</tr>
<tr>
<td>Sadeghi-sat-Haghiki, K</td>
<td>Iran Nursing</td>
<td>Double blind</td>
<td>Sleep outcomes and other</td>
<td>1 night; 4 days wash out</td>
<td>Tehran University of Medical Sciences</td>
<td>No</td>
</tr>
<tr>
<td>Bomina (Junior, J)</td>
<td>Croatia Security firm</td>
<td>Monthly rotating</td>
<td>Sleep outcomes</td>
<td>1 week</td>
<td>May und Becker und Inomachie (control)</td>
<td>No</td>
</tr>
<tr>
<td>Gigi</td>
<td>Italy Nursing</td>
<td>Forward rotating</td>
<td>Sleep outcomes</td>
<td>9 weeks</td>
<td>Exadrugier Ingeme (Eula)</td>
<td>No</td>
</tr>
<tr>
<td>Moshchinsky</td>
<td>Canada Automotive plant</td>
<td>5 day rotation</td>
<td>Sleep outcomes</td>
<td>1 week</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Emran, M K**</td>
<td>USA</td>
<td>Mixture 99% permanent</td>
<td>Sleep outcomes</td>
<td>68 weeks</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Tembe, D V</td>
<td>India</td>
<td>Unspecified</td>
<td>Sleep outcomes</td>
<td>6 weeks</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Czeisler, CA</td>
<td>USA and Canada</td>
<td>Mixture 86.9% permanent</td>
<td>Sleep outcomes</td>
<td>12 weeks</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Erman, M K</td>
<td>USA</td>
<td>Unspecified</td>
<td>Sleep outcomes</td>
<td>12 weeks</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Czeisler, C</td>
<td>USA</td>
<td>Mixture 97% permanent</td>
<td>Sleep outcomes</td>
<td>12 weeks</td>
<td>Cephalon Inc</td>
<td>Yes</td>
</tr>
<tr>
<td>Zhang, L</td>
<td>China</td>
<td>Forward rolling shift nurses</td>
<td>Sleep outcomes</td>
<td>1 month</td>
<td>Youth Science and Technology Innovation Personnel Training Program, and Finnish Work Environment Fund</td>
<td>No</td>
</tr>
<tr>
<td>Jarmell, H</td>
<td>Finland</td>
<td>Vari et</td>
<td>Sleep outcomes</td>
<td>6 months</td>
<td>French Work Environment Fund, Nordnah, the Nordic Program on Health and Welfare</td>
<td>No</td>
</tr>
<tr>
<td>Chang Y Y</td>
<td>Taiwan</td>
<td>Mixture nursing staff</td>
<td>Sleep outcomes</td>
<td>Up to 10 weeks</td>
<td>Finnish Work Environment Fund, Nordnah, the Nordic Program on Health and Welfare</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of included studies.

- **Study**: The name of the study or the research group.
- **Population**: The characteristics of the study population.
- **Intervention**: The details of the intervention used.
- **Outcome focus**: The specific outcomes measured.
- **Timing**: The duration of the intervention and follow-up.
- **Funding Source**: The source of funding for the study.
- **Conflict of interests with relevant pharmaceutical company declared**: Whether any financial conflicts of interest were reported.

Note: RCT = Randomized Controlled Trial.
<table>
<thead>
<tr>
<th>Study</th>
<th>Measurement Tool (Sleep outcomes)</th>
<th>Sleep outcomes</th>
<th>Wake-time outcomes</th>
<th>Combined</th>
<th>Other outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadeghniiat-Haghighi, K</td>
<td>Actigraphy</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sadeghniiat-Haghighi, K</td>
<td>Diary</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Bozin-Juriacic, J</td>
<td>Diary</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Gigli</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monchesky</td>
<td>Diary</td>
<td>*</td>
<td>*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Erman, M K</td>
<td>Diary</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Tembe, D V</td>
<td>Polysomnography</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Erman, M K</td>
<td>Polysomnography</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Czeisler, C A</td>
<td>Polysomnography</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Zhang, L</td>
<td>ECG based sleep detector</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Jarnefelt, H</td>
<td>Actigraphy & Diary</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Chang, Y Y.</td>
<td>ECG based sleep detector</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Huang, L B.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

34 outcomes unlisted as not reported by more than one study.
*Reported “speed of sleep onset” and “duration” of the sleep on a 0–9 score scale.
**Erman 2011 and 2012 placed together here as were conducted on the same study group.
Reported (Y): total Sleep Time (TST); Sleep onset latency (SOL); sleep efficiency (SE); wake after sleep onset (WASO); total bed time (TBT); sleep quality (SQ); number of awakenings (NoA); multiple sleep latency test (MSLT); epworth sleepiness scale (ESS); karolinska sleepiness scale (KSS); stanford sleepiness scale (SSS); insomnia severity index (ISI); Pittsburgh sleep quality index (PSQI); FOSQ10 (functional outcomes of sleep questionnaire 10); 36 item short form survey (SF-36/RAND-36); Simple reaction time (RT); Clinical global impression of change (CGI-C); hospital anxiety and depression scale (HADS); adverse events (AE).
participant attrition in experimental and control arms in both pharmacological and non-pharmacological studies. Many drop-outs were unexplained.

Previous systematic reviews looking at a wider population of all shift-workers have similarly found a paucity of evidence regarding impact of interventions\(^6,9\). There are many interventions that have been considered in the literature for sleep disturbance\(^2,26\) that do not appear to have been evaluated in clinical trials with populations that meet the criteria for SWD, for example individual intervention strategies such as napping\(^10\) and institutional level interventions such as optimising shift schedules\(^11\). These interventions could be considered in future work looking at the SWD population specifically.

In this scoping review, we have grouped the short-term trial outcomes into sleep outcomes (ease of falling asleep, the continuity, duration and quality of obtained sleep), wake-time outcomes (sleepiness during waking hours), combined sleep-wake outcomes and other aspects of impairment. Sleep outcomes are the primary target of hypnotic pharmacological interventions whilst wake-time outcomes are that of wakefulness-promoting (stimulant) pharmacological agents. Non-pharmacological interventions vary in their putative mode of action.

The lack of consistent measurement of sleep outcomes was perhaps unsurprising then. Studies of the efficacy of stimulant pharmacological agents were aiming to promote wakefulness whilst at work and so often used real time state-based assessments like KSS and SSS. These were not used by any study of hypnotics or non-pharmacological interventions. Multiple studies reported a range of sleep outcomes (TST, SOL) but instrument of measurement was variable. Further work in this area could establish useful and replicable outcome measures for SWD.

The MSLT is described as the gold standard measure of sleepiness and is objective but many of the studies included in this review only used subjective measures of sleepiness\(^14,15,20\). Whilst subjective measures of sleepiness are clinically relevant and sensitive to insufficient sleep acutely\(^22\), they have a non-linear relationship to sleep debt and correlate poorly with sleep debt in the context of chronic sleep deprivation\(^33\). Further, occupational impairment in SWD has been shown to be more strongly correlated to insomnia than to sleepiness so focusing on sleepiness may be unhelpful for work related outcomes\(^24\). As such, it is likely a useful set of outcome measures for SWD will cover multiple domains of the disorder: insomnia symptoms, excessive wake time sleepiness and impact on functioning. These need to be consistent and standardised to prevent research waste where data from one study cannot be used to inform subsequent work or contribute to systematic reviews of the problem. We envisage shift-worker participation in future outcome measure development will be beneficial.

Advice for shift workers using available evidence has been described pragmatically elsewhere\(^35\). There are also multiple guidelines available for clinicians treating patients with sleep disturbance due to shift work\(^26,37\). The evidence for the effectiveness of interventions currently available is unclear and the lack of follow-on evaluations from those identified in this review confirms the continuing uncertainty and gap in the evidence. Novel treatments and combinations of current treatments, targeting individuals where the type of shift work and the combination of symptoms experienced by an individual are needed.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

References

Open Peer Review

Current Peer Review Status: ? ☑️

Reviewer Report 05 August 2022

https://doi.org/10.21956/wellcomeopenres.18774.r51643

© 2022 Joseph B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bobby Joseph
Department of Community Health, St. John's Medical College, Bangalore, India

This being a scoping review, the authors have achieved their stated objectives of wanting to establish the types and extent of available outcome data on the impact of pharmacological and non-pharmacological interventions on shift work related sleep disturbance in the occupational setting.

Having identified 1250 unique studies and whittling this down to just 14 trials that met the inclusion criteria, it was obviously a lengthy process. The findings of these 14 studies have been presented concisely both in the text as well as in the table. The paper has been well written and presents easy avenues for researchers who want to carry out their own research on the topic. If scoping reviews such as these fall within the purview of the journal, this article must surely Approved.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Not applicable

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Public health, primary health care, occupational health
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 16 May 2022

https://doi.org/10.21956/wellcomeopenres.18774.r50051

© 2022 Anderson K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kirstie N. Anderson

1 Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
2 Regional Sleep Service, Newcastle upon Tyne, UK

The paper is clear, well written and comes from expert colleagues. However, this is essentially stating that there is insufficient evidence to carry out meta-analysis - I agree with this and that there is very limited data. In fact there are no two trials using the same methodology or intervention. A minor point but I disagree with the opening sentence, there isn't really any evidence for shift work increasing, most work fewer hours with more protection of sleep periods in legislation compared to any period from the industrial revolution onwards. About 20% of people work some form of shift but this figure has been consistent over some time. Therefore many people work shifts, but always have. There isn't a clear definition of what a shift is or what makes a shift worker to help the non-expert.

I had some questions about the interventions that were included and discussed. Brotizolam is a potent, old hypnotic no longer licensed for use in the UK, US or Canada which I think either needs to be clearly stated in the text or this study not used for those reasons. Likewise - there is a single PubMed reference only to shimian granules - a product that is not licensed and there is simply no information at all on what they are - a Chinese complimentary medicine not in any way standard for sleep clinics. Again, there is a single RCT but nothing else at all in PubMed relevant for shimian granules.

I appreciate the authors decided against critical review or narrative review but a small amount of extra information still seems necessary here.

Accepting the timelines of any systematic review and inevitably - more studies will follow. However given such limited data - there is a very recent RCT using CBTi strategies just published\(^1\). I think the paper ideally should be revised and this paper should be included, there is so little data that this would be a valuable addition, no stats were possible and all information presented is simply descriptive so I do not see this taking the authors significant time.

There is also another drug company-listed trial with all results in clinicaltrials.gov I think it may have been reasonable to discuss this - Study of the Efficacy and Multiple-Dose Plasma Concentration-Time Profiles of Armodafinil and PROVIGIL - Study Results - ClinicalTrials.gov.
References

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Not applicable

Are the conclusions drawn adequately supported by the results presented in the review?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Sleep medicine

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 29 Nov 2022
Rebecca Conway-Jones

Dear Dr Anderson,

Firstly, thank you for your considered and clear review. We appreciate the time and care which you took in reading this paper and making your comments. Our responses to the points raised are below. I have endeavoured to give line numbers for each change to make reviewing the changes easier but am aware formatting carried out by the editorial team might alter these:

Revision 1
 - “A minor point but I disagree with the opening sentence, there isn’t really any evidence for shift work increasing, most work fewer hours with more protection of sleep periods in legislation compared to any period from the industrial revolution onwards. About 20% of people work some form of shift but this figure has been consistent over some time. Therefore many people work shifts, but always have.”
 - Thank you for clarifying this – we have edited the first part of the introduction to reflect this.

Revision 2
 - “There isn't a clear definition of what a shift is or what makes a shift worker to help
the non-expert.”

○ Apologies for this oversight. We have added in a definition of shift-work to the first paragraph of the introduction.

Revision 3

○ “I had some questions about the interventions that were included and discussed. Brotizolam is a potent, old hypnotic no longer licensed for use in the UK, US or Canada which I think either needs to be clearly stated in the text or this study not used for those reasons.”

○ This is a very useful point. We have chosen to keep the study included as it does otherwise fit the inclusion criteria we have previously stated. However, we have made it clear in the third paragraph of the Results section that it is not licensed in the UK, US or Canada. For both this and the point about Shimian Granules we have then highlighted this again in the first paragraph of Discussion.

Revision 4

○ “Likewise - there is a single PubMed reference only to shimian granules - a product that is not licensed and there is simply no information at all on what they are - a chinese complimentary medicine not in any way standard for sleep clinics. Again, there is a single RCT but nothing else at all in PubMed relevant for shimian granules. I appreciate the authors decided against critical review or narrative review but a small amount of extra information still seems necessary here.”

○ Yes, similarly we agree this is important and are grateful for your highlighting this. We have added a sentence to this effect in Results (second paragraph). For both this and the point about Brotizolam we have then highlighted this again in the first paragraph of the Discussion.

Revision 5

○ “Accepting the timelines of any systematic review and inevitably - more studies will follow. However given such limited data - there is a very recent RCT using CBTi strategies just published¹. I think the paper ideally should be revised and this paper should be included, there is so little data that this would be a valuable addition, no stats were possible and all information presented is simply descriptive so I do not see this taking the authors significant time.”

○ Yes thank you so much for raising this. We agree this is a useful trial to highlight given the paucity of trials otherwise. We have simply included it and explained in the Results section how it has been added after peer review (first paragraph of Results). Whilst this isn't perfect we agree that including it, even post-hoc, is in keeping with the goals of a scoping review. It is a valuable addition for completeness of this paper though it has not changed our conclusions

○ The main edits pertaining to this are found in Figure 1, Tables 2 and 3 and within the Results section.

Revision 6

○ “There is also another drug company-listed trial with all results in clinicaltrials.gov I think it may have been reasonable to discuss this - Study of the Efficacy and Multiple-Dose Plasma Concentration-Time Profiles of Armadafinil and PROVIGIL - Study Results - ClinicalTrials.gov.”

○ Thank you for highlighting this. To acknowledge this study we have added a line in the Methods under ‘Search Method’ in order to make reference to it. In contrast to the above
(Booker et al 2022), we couldn't fully include this study as our Methods included only trials published in journal articles. Therefore, we cannot exclude the possibility we excluded other drug company-listed trials with a similar profile to this one on the basis they had not been published. However, we hope that by making reference to it our review will still serve to make readers aware of this available data.

Competing Interests: No competing interests were disclosed.